
NAG Fortran Library Routine Document

E02BEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

E02BEF computes a cubic spline approximation to an arbitrary set of data points. The knots of the spline
are located automatically, but a single parameter must be specified to control the trade-off between
closeness of fit and smoothness of fit.

2 Specification

SUBROUTINE E02BEF(START, M, X, Y, W, S, NEST, N, LAMDA, C, FP, WRK,
1 LWRK, IWRK, IFAIL)

INTEGER M, NEST, N, LWRK, IWRK(NEST), IFAIL
real X(M), Y(M), W(M), S, LAMDA(NEST), C(NEST), FP,

1 WRK(LWRK)
CHARACTER*1 START

3 Description

This routine determines a smooth cubic spline approximation sðxÞ to the set of data points ðxr; yrÞ, with
weights wr, for r ¼ 1; 2; . . . ;m.

The spline is given in the B-spline representation

sðxÞ ¼
Xn�4

i¼1

ciNiðxÞ; ð1Þ

where NiðxÞ denotes the normalised cubic B-spline defined upon the knots �i; �iþ1; . . . ; �iþ4.

The total number n of these knots and their values �1; . . . ; �n are chosen automatically by the routine.
The knots �5; . . . ; �n�4 are the interior knots; they divide the approximation interval ½x1; xm� into n� 7
sub-intervals. The coefficients c1; c2; . . . ; cn�4 are then determined as the solution of the following
constrained minimization problem:

minimize

� ¼
Xn�4

i¼5

�2i ð2Þ

subject to the constraint

� ¼
Xm

r¼1

�2r � S; ð3Þ

where �i stands for the discontinuity jump in the third order derivative of sðxÞ at the interior knot �i,
�r denotes the weighted residual wrðyr � sðxrÞÞ,

and S is a non-negative number to be specified by the user.

The quantity � can be seen as a measure of the (lack of) smoothness of sðxÞ, while closeness of fit is
measured through �. By means of the parameter S, ‘the smoothing factor’, the user will then control the
balance between these two (usually conflicting) properties. If S is too large, the spline will be too smooth
and signal will be lost (underfit); if S is too small, the spline will pick up too much noise (overfit). In the
extreme cases the routine will return an interpolating spline ð� ¼ 0Þ if S is set to zero, and the weighted
least-squares cubic polynomial ð� ¼ 0Þ if S is set very large. Experimenting with S values between these
two extremes should result in a good compromise. (See Section 8.2 for advice on choice of S.)

E02 – Curve and Surface Fitting E02BEF

[NP3546/20A] E02BEF.1

The method employed is outlined in Section 8.3 and fully described in Dierckx (1975), Dierckx (1981a)
and Dierckx (1982). It involves an adaptive strategy for locating the knots of the cubic spline (depending
on the function underlying the data and on the value of S), and an iterative method for solving the
constrained minimization problem once the knots have been determined.

Values of the computed spline, or of its derivatives or definite integral, can subsequently be computed by
calling E02BBF, E02BCF or E02BDF, as described in Section 8.4.

4 References

Dierckx P (1975) An algorithm for smoothing, differentiating and integration of experimental data using
spline functions J. Comput. Appl. Math. 1 165–184

Dierckx P (1982) A fast algorithm for smoothing data on a rectangular grid while using spline functions
SIAM J. Numer. Anal. 19 1286–1304

Dierckx P (1981a) An improved algorithm for curve fitting with spline functions Report TW54 Department
of Computer Science, Katholieke Univerciteit Leuven

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Parameters

1: START – CHARACTER*1 Input

On entry: START must be set to ’C’ or ’W’.

If START ¼ ’C’ (Cold start), the routine will build up the knot set starting with no interior knots.
No values need be assigned to the parameters N, LAMDA, WRK or IWRK.

If START ¼ ’W’ (Warm start), the routine will restart the knot-placing strategy using the knots
found in a previous call of the routine. In this case, the parameters N, LAMDA, WRK, and IWRK
must be unchanged from that previous call. This warm start can save much time in searching for a
satisfactory value of S.

Constraint: START ¼ ’C’ or ’W’.

2: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M � 4.

3: X(M) – real array Input

On entry: the values xr of the independent variable (abscissa) x, for r ¼ 1; 2; . . . ;m.

Constraint: x1 < x2 < � � � < xm.

4: Y(M) – real array Input

On entry: the values yr of the dependent variable (ordinate) y, for r ¼ 1; 2; . . . ;m.

5: W(M) – real array Input

On entry: the values wr of the weights, for r ¼ 1; 2; . . . ;m. For advice on the choice of weights,
see Section 2.1.2 of the E02 Chapter Introduction.

Constraint: WðrÞ > 0, for r ¼ 1; 2; . . . ;m.

E02BEF NAG Fortran Library Manual

E02BEF.2 [NP3546/20A]

6: S – real Input

On entry: the smoothing factor, S.

If S ¼ 0:0, the routine returns an interpolating spline.

If S is smaller than machine precision, it is assumed equal to zero.

For advice on the choice of S, see Section 3 and Section 8.2.

Constraint: S � 0:0.

7: NEST – INTEGER Input

On entry: an over-estimate for the number, n, of knots required.

Constraint: NEST � 8. In most practical situations, NEST ¼ M=2 is sufficient. NEST never needs
to be larger than Mþ 4, the number of knots needed for interpolation ðS ¼ 0:0Þ.

8: N – INTEGER Input/Output

On entry: if the warm start option is used, the value of N must be left unchanged from the previous
call.

On exit: the total number, n, of knots of the computed spline.

9: LAMDA(NEST) – real array Input/Output

On entry: if the warm start option is used, the values LAMDAð1Þ;LAMDAð2Þ; . . . ;LAMDAðNÞ
must be left unchanged from the previous call.

On exit: the knots of the spline i.e., the positions of the interior knots LAMDAð5Þ;
LAMDAð6Þ; . . . ;LAMDAðN� 4Þ as well as the positions of the additional knots

LAMDAð1Þ ¼ LAMDAð2Þ ¼ LAMDAð3Þ ¼ LAMDAð4Þ ¼ x1

and

LAMDAðN� 3Þ ¼ LAMDAðN� 2Þ ¼ LAMDAðN� 1Þ ¼ LAMDAðNÞ ¼ xm

needed for the B-spline representation.

10: C(NEST) – real array Output

On exit: the coefficient ci of the B-spline NiðxÞ in the spline approximation sðxÞ, for
i ¼ 1; 2; . . . ; n� 4.

11: FP – real Output

On exit: the sum of the squared weighted residuals, �, of the computed spline approximation. If
FP ¼ 0:0, this is an interpolating spline. FP should equal S within a relative tolerance of 0.001
unless n ¼ 8 when the spline has no interior knots and so is simply a cubic polynomial. For knots
to be inserted, S must be set to a value below the value of FP produced in this case.

12: WRK(LWRK) – real array Workspace

On entry: if the warm start option is used, the values WRKð1Þ; . . . ;WRKðnÞ must be left
unchanged from the previous call.

13: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E02BEF is
called.

Constraint: LWRK � 4�Mþ 16� NESTþ 41.

E02 – Curve and Surface Fitting E02BEF

[NP3546/20A] E02BEF.3

14: IWRK(NEST) – INTEGER array Workspace

On entry: if the warm start option is used, the values IWRKð1Þ; . . . ; IWRKðnÞ must be left
unchanged from the previous call.

This array is used as workspace.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, START 6¼ ’C’ or ’W’,
or M < 4,
or S < 0:0,
or S ¼ 0:0 and NEST < Mþ 4,
or NEST < 8,
or LWRK < 4�Mþ 16� NESTþ 41.

IFAIL ¼ 2

The weights are not all strictly positive.

IFAIL ¼ 3

The values of XðrÞ, for r ¼ 1; 2; . . . ;M, are not in strictly increasing order.

IFAIL ¼ 4

The number of knots required is greater than NEST. Try increasing NEST and, if necessary,
supplying larger arrays for the parameters LAMDA, C, WRK and IWRK. However, if NEST is
already large, say NEST > M=2, then this error exit may indicate that S is too small.

IFAIL ¼ 5

The iterative process used to compute the coefficients of the approximating spline has failed to
converge. This error exit may occur if S has been set very small. If the error persists with
increased S, consult NAG.

If IFAIL ¼ 4 or 5, a spline approximation is returned, but it fails to satisfy the fitting criterion (see (2) and
(3) in Section 3) – perhaps by only a small amount, however.

7 Accuracy

On successful exit, the approximation returned is such that its weighted sum of squared residuals FP is
equal to the smoothing factor S, up to a specified relative tolerance of 0.001 – except that if n ¼ 8, FP may
be significantly less than S: in this case the computed spline is simply a weighted least-squares polynomial
approximation of degree 3, i.e., a spline with no interior knots.

E02BEF NAG Fortran Library Manual

E02BEF.4 [NP3546/20A]

8 Further Comments

8.1 Timing

The time taken for a call of E02BEF depends on the complexity of the shape of the data, the value of the
smoothing factor S, and the number of data points. If E02BEF is to be called for different values of S,
much time can be saved by setting START ¼ ’W’ after the first call.

8.2 Choice of S

If the weights have been correctly chosen (see Section 2.1.2 of the E02 Chapter Introduction), the standard
deviation of wryr would be the same for all r, equal to �, say. In this case, choosing the smoothing factor

S in the range �2ðm�
ffiffiffiffiffiffiffi
2m

p
Þ, as suggested by Reinsch (1967), is likely to give a good start in the search

for a satisfactory value. Otherwise, experimenting with different values of S will be required from the
start, taking account of the remarks in Section 3.

In that case, in view of computation time and memory requirements, it is recommended to start with a very
large value for S and so determine the least-squares cubic polynomial; the value returned for FP, call it
FP0, gives an upper bound for S. Then progressively decrease the value of S to obtain closer fits – say by
a factor of 10 in the beginning, i.e., S ¼ FP0=10, S ¼ FP0=100, and so on, and more carefully as the
approximation shows more details.

The number of knots of the spline returned, and their location, generally depend on the value of S and on
the behaviour of the function underlying the data. However, if E02BEF is called with START ¼ ’W’, the
knots returned may also depend on the smoothing factors of the previous calls. Therefore if, after a
number of trials with different values of S and START ¼ ’W’, a fit can finally be accepted as satisfactory,
it may be worthwhile to call E02BEF once more with the selected value for S but now using
START ¼ ’C’. Often, E02BEF then returns an approximation with the same quality of fit but with fewer
knots, which is therefore better if data reduction is also important.

8.3 Outline of Method Used

If S ¼ 0, the requisite number of knots is known in advance, i.e., n ¼ mþ 4; the interior knots are located
immediately as �i ¼ xi�2, for i ¼ 5; 6; . . . ; n� 4. The corresponding least-squares spline (see E02BAF) is
then an interpolating spline and therefore a solution of the problem.

If S > 0, a suitable knot set is built up in stages (starting with no interior knots in the case of a cold start
but with the knot set found in a previous call if a warm start is chosen). At each stage, a spline is fitted to
the data by least-squares (see E02BAF) and �, the weighted sum of squares of residuals, is computed. If
� > S, new knots are added to the knot set to reduce � at the next stage. The new knots are located in
intervals where the fit is particularly poor, their number depending on the value of S and on the progress
made so far in reducing �. Sooner or later, we find that � � S and at that point the knot set is accepted.
The routine then goes on to compute the (unique) spline which has this knot set and which satisfies the full
fitting criterion specified by (2) and (3). The theoretical solution has � ¼ S. The routine computes the
spline by an iterative scheme which is ended when � ¼ S within a relative tolerance of 0.001. The main
part of each iteration consists of a linear least-squares computation of special form, done in a similarly
stable and efficient manner as in E02BAF.

An exception occurs when the routine finds at the start that, even with no interior knots ðn ¼ 8Þ, the least-
squares spline already has its weighted sum of squares of residuals � S. In this case, since this spline
(which is simply a cubic polynomial) also has an optimal value for the smoothness measure �, namely
zero, it is returned at once as the (trivial) solution. It will usually mean that S has been chosen too large.

For further details of the algorithm and its use, see Dierckx (1981a).

8.4 Evaluation of Computed Spline

The value of the computed spline at a given value X may be obtained in the real variable S by the call:

CALL E02BBF(N,LAMDA,C,X,S,IFAIL)

where N, LAMDA and C are the output parameters of E02BEF.

E02 – Curve and Surface Fitting E02BEF

[NP3546/20A] E02BEF.5

The values of the spline and its first three derivatives at a given value X may be obtained in the real array
SDIF of dimension at least 4 by the call:

CALL E02BCF(N,LAMDA,C,X,LEFT,SDIF,IFAIL)

where if LEFT ¼ 1, left-hand derivatives are computed and if LEFT 6¼ 1, right-hand derivatives are
calculated. The value of LEFT is only relevant if X is an interior knot.

The value of the definite integral of the spline over the interval X(1) to X(M) can be obtained in the real
variable SINT by the call:

CALL E02BDF(N,LAMDA,C,SINT,IFAIL)

9 Example

This example program reads in a set of data values, followed by a set of values of S. For each value of S
it calls E02BEF to compute a spline approximation, and prints the values of the knots and the B-spline
coefficients ci.

The program includes code to evaluate the computed splines, by calls to E02BBF, at the points xr and at
points mid-way between them. These values are not printed out, however; instead the results are illustrated
by plots of the computed splines, together with the data points (indicated by �) and the positions of the
knots (indicated by vertical lines): the effect of decreasing S can be clearly seen. (The plots were obtained
by calling NAG Graphical Supplement routine J06FAF.)

×

×

×

×
×

×

× ×
× × ×

×

×

×

×

1 2 3 4 5 6 7 8
0

2

4

6

 S = 1.0
f

x

Figure 1

E02BEF NAG Fortran Library Manual

E02BEF.6 [NP3546/20A]

×

×

×

×
×

×

× ×
× × ×

×

×

×

×

1 2 3 4 5 6 7 8
0

2

4

6

 S = 0.5
f

x

Figure 2

×

×

×

×
×

×

× ×
× × ×

×

×

×

×

1 2 3 4 5 6 7 8
0

2

4

6

 S = 0.1
f

x

Figure 3

E02 – Curve and Surface Fitting E02BEF

[NP3546/20A] E02BEF.7

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* E02BEF Example Program Text
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX, NEST, LWRK
PARAMETER (MMAX=50,NEST=MMAX+4,LWRK=4*MMAX+16*NEST+41)

* .. Local Scalars ..
real FP, S, TXR
INTEGER IFAIL, J, M, N, R
CHARACTER*1 START

* .. Local Arrays ..
real C(NEST), K(NEST), SP(2*MMAX-1), W(MMAX),

+ WRK(LWRK), X(MMAX), Y(MMAX)
INTEGER IWRK(NEST)

* .. External Subroutines ..
EXTERNAL E02BBF, E02BEF

* .. Executable Statements ..
WRITE (NOUT,*) ’E02BEF Example Program Results’

* Skip heading in data file
READ (NIN,*)

* Input the number of data points, followed by the data points (X),
* the function values (Y) and the weights (W).

READ (NIN,*) M
IF (M.GT.0 .AND. M.LE.MMAX) THEN

DO 20 R = 1, M
READ (NIN,*) X(R), Y(R), W(R)

20 CONTINUE
START = ’C’

* Read in successive values of S until end of data file.
40 READ (NIN,*,END=120) S

* Determine the spline approximation.
IFAIL = 0

*
CALL E02BEF(START,M,X,Y,W,S,NEST,N,K,C,FP,WRK,LWRK,IWRK,IFAIL)

*
* Evaluate the spline at each X point and midway between
* X points, saving the results in SP.

DO 60 R = 1, M
IFAIL = 0

*
CALL E02BBF(N,K,C,X(R),SP((R-1)*2+1),IFAIL)

*
60 CONTINUE

DO 80 R = 1, M - 1
IFAIL = 0
TXR = (X(R)+X(R+1))/2

*
CALL E02BBF(N,K,C,TXR,SP(R*2),IFAIL)

*
80 CONTINUE

* Output the results.
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Calling with smoothing factor S =’, S
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’ B-Spline’
WRITE (NOUT,*)

+ ’ J Knot K(J+2) Coefficient C(J)’
WRITE (NOUT,99998) 1, C(1)
DO 100 J = 2, N - 5

WRITE (NOUT,99997) J, K(J+2), C(J)
100 CONTINUE

WRITE (NOUT,99998) N - 4, C(N-4)
WRITE (NOUT,*)

E02BEF NAG Fortran Library Manual

E02BEF.8 [NP3546/20A]

WRITE (NOUT,99999) ’Weighted sum of squared residuals FP =’, FP
IF (FP.EQ.0.0e0) THEN

WRITE (NOUT,*) ’(The spline is an interpolating spline)’
ELSE IF (N.EQ.8) THEN

WRITE (NOUT,*)
+ ’(The spline is the weighted least-squares cubic polynomial)’

END IF
WRITE (NOUT,*)
START = ’W’
GO TO 40

END IF
120 STOP

*
99999 FORMAT (1X,A,1P,e12.3)
99998 FORMAT (11X,I4,16X,F16.4)
99997 FORMAT (11X,I4,2F16.4)

END

9.2 Program Data

E02BEF Example Program Data
15 M, the number of data points
0.0000E+00 -1.1000E+00 1.00 X, Y, W, abscissa, ordinate and weight
5.0000E-01 -3.7200E-01 2.00
1.0000E+00 4.3100E-01 1.50
1.5000E+00 1.6900E+00 1.00
2.0000E+00 2.1100E+00 3.00
2.5000E+00 3.1000E+00 1.00
3.0000E+00 4.2300E+00 0.50
4.0000E+00 4.3500E+00 1.00
4.5000E+00 4.8100E+00 2.00
5.0000E+00 4.6100E+00 2.50
5.5000E+00 4.7900E+00 1.00
6.0000E+00 5.2300E+00 3.00
7.0000E+00 6.3500E+00 1.00
7.5000E+00 7.1900E+00 2.00
8.0000E+00 7.9700E+00 1.00 End of data points
1.0 S, smoothing factor
0.5 S, smoothing factor
0.1 S, smoothing factor

9.3 Program Results

E02BEF Example Program Results

Calling with smoothing factor S = 1.000E+00

B-Spline
J Knot K(J+2) Coefficient C(J)
1 -1.3201
2 0.0000 1.3542
3 4.0000 5.5510
4 8.0000 4.7031
5 8.2277

Weighted sum of squared residuals FP = 1.000E+00

Calling with smoothing factor S = 5.000E-01

B-Spline
J Knot K(J+2) Coefficient C(J)
1 -1.1072
2 0.0000 -0.6571
3 1.0000 0.4350
4 2.0000 2.8061
5 4.0000 4.6824
6 5.0000 4.6416
7 6.0000 5.1976
8 8.0000 6.9008

E02 – Curve and Surface Fitting E02BEF

[NP3546/20A] E02BEF.9

9 7.9979

Weighted sum of squared residuals FP = 5.001E-01

Calling with smoothing factor S = 1.000E-01

B-Spline
J Knot K(J+2) Coefficient C(J)
1 -1.0900
2 0.0000 -0.6422
3 1.0000 0.0369
4 1.5000 1.6353
5 2.0000 2.1274
6 3.0000 4.5526
7 4.0000 4.2225
8 4.5000 4.9108
9 5.0000 4.4159

10 6.0000 5.4794
11 8.0000 6.8308
12 7.9935

Weighted sum of squared residuals FP = 1.000E-01

E02BEF NAG Fortran Library Manual

E02BEF.10 (last) [NP3546/20A]

	E02BEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	START
	M
	X
	Y
	W
	S
	NEST
	N
	LAMDA
	C
	FP
	WRK
	LWRK
	IWRK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5

	7 Accuracy
	8 Further Comments
	8.1 Timing
	8.2 Choice of S
	8.3 Outline of Method Used
	8.4 Evaluation of Computed Spline

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

